A data-driven, cooperative wind farm control to maximize the total power production

نویسندگان

  • Jinkyoo Park
  • Kincho H. Law
چکیده

This study investigates the feasibility of using a data-driven optimization approach to determine the coordinated control actions of wind turbines that maximize the total wind farm power production. Conventionally, for a given wind condition, an individual wind turbine maximizes its own power production without taking into consideration the conditions of other wind turbines. Under this greedy control strategy, the wake formed by the upstream wind turbine, resulting in reduced wind speed and increased turbulence intensity inside the wake, would affect and lower the power productions of the downstream wind turbines. To increase the overall wind farm power production, cooperative wind turbine control approaches have been proposed to coordinate the control actions that mitigate the wake interference among the wind turbines and would thus increase the total wind farm power production. This study explores the use of a data-driven approach to identify the optimum coordinated control actions of the wind turbines using limited amount of data. Specifically, we study the feasibility of the Bayesian Ascent (BA) algorithm, a probabilistic optimization algorithm based on non-parametric Gaussian Process regression technique, for the wind farm power maximization problem. The BA algorithm is employed to maximize an analytical wind farm power function that is constructed based on wind farm configurations and wind conditions. The results show that the BA algorithm can achieve a monotonic increase in the total wind farm power production using a small number of function evaluations and has the potentials to be used for real-time wind farm control. 2015 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Data-Driven, Cooperative Approach for Wind Farm Control: A Wind Tunnel Experimentation

This paper discusses a data-driven, cooperative control strategy to maximize wind farm power production. Conventionally, every wind turbine in a wind farm is operated to maximize its own power production without taking into account the interactions between the wind turbines in a wind farm. Because of wake interference, such greedy control strategy can significantly lower the power production of...

متن کامل

A Bayesian optimization approach for wind farm power maximization

The objective of this study is to develop a model-free optimization algorithm to improve the total wind farm power production in a cooperative game framework. Conventionally, for a given wind condition, an individual wind turbine maximizes its own power production without taking into consideration the conditions of other wind turbines. Under this greedy control strategy, the wake formed by the ...

متن کامل

A New Control Method for Smoothing PMSG-based Offshore Wind Farm Output Power

Nowadays, propagation of wind turbines make challenges to supply safe power to the grid. Because of wind speed changes, supervisors are concerned to wind turbines, be able to produce appropriate electric power during the wind speed changes. As a matter of fact, investors are mostly like to invest on offshore wind farms, because of their more stable and continuous wind speed rather than onshore ...

متن کامل

Optimal Control to Increase Energy Production of Wind Farm Considering Wake Effect and Lifetime Estimation

In a wind farm, the upstream wind turbine may cause power loss to the downstream wind turbines due to the wake effect. Meanwhile, the energy production is determined by the power generation and the lifetime of the wind turbine. In this paper, an optimal active power control method is proposed to maximize the energy production of wind farms by considering the wake effect and the lifetime of wind...

متن کامل

EE 364B: Wind Farm Layout Optimization via Sequential Convex Programming

In a wind farm, the wakes formed by upstream wind turbines decrease the power outputs of downstream wind turbines by reducing wind speed. This wake interference significantly lowers the power production of a wind farm, especially that of a large-scale wind farm. In this paper, we express wind farm power as a differentiable function of location variables. We then apply a sequential convex progra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016